Chapter 16

Electric Charge and Electric Field

Units of Chapter 16

- Static Electricity; Electric Charge and Its Conservation
- Electric Charge in the Atom
- Insulators and Conductors
- Induced Charge; the Electroscope
- Coulomb’s Law
- Solving Problems Involving Coulomb’s Law and Vectors
- The Electric Field

16.1 Static Electricity; Electric Charge and Its Conservation

Objects can be charged by rubbing

(a) Two charged plastic rulers repel
(b) Two charged glass rods repel
(c) Charged glass rod attracts charged plastic ruler

Charge comes in two types, positive and negative; like charges repel and opposite charges attract
16.1 Static Electricity; Electric Charge and Its Conservation

Electric charge is conserved – the arithmetic sum of the total charge cannot change in any interaction.

16.2 Electric Charge in the Atom

Atom:
Nucleus (small, massive, positive charge)
Electron cloud (large, very low density, negative charge)

16.2 Electric Charge in the Atom

Atom is electrically neutral.
Rubbing charges objects by moving electrons from one to the other.

16.3 Insulators and Conductors

Conductor: Charge flows freely
Insulator: Almost no charge flows
Metals: Most other materials
Some materials are semiconductors.

16.4 Induced Charge; the Electroscope

Metal objects can be charged by conduction:

(a) Neutral metal rod
(b) Metal rod acquires charge by contact
16.4 Induced Charge; the Electroscope

They can also be charged by induction:

(a)

(b)

(c)

Nonconductors won’t become charged by conduction or induction, but will experience charge separation:

16.4 Induced Charge; the Electroscope

The electroscope can be used for detecting charge:

The charged electroscope can then be used to determine the sign of an unknown charge.

16.5 Coulomb’s Law

Experiment shows that the electric force between two charges is proportional to the product of the charges and inversely proportional to the distance between them.
16.5 Coulomb’s Law

Coulomb’s law:

\[F = k \frac{Q_1 Q_2}{r^2} \] \hspace{2cm} (16-1)

This equation gives the magnitude of the force.

The force is along the line connecting the charges, and is attractive if the charges are opposite, and repulsive if they are the same.

Unit of charge: coulomb, C

The proportionality constant in Coulomb’s law is then:

\[k = 8.988 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2 \]

Charges produced by rubbing are typically around a microcoulomb:

\[1 \ \mu\text{C} = 10^{-6} \text{ C} \]

The proportionality constant \(k \) can also be written in terms of \(\varepsilon_0 \), the permittivity of free space:

\[F = \frac{1}{4\pi\varepsilon_0} \frac{Q_1 Q_2}{r^2} \]

\[\varepsilon_0 = \frac{1}{4\pi k} = 8.85 \times 10^{-12} \text{ C}^2/\text{N} \cdot \text{m}^2 \] \hspace{2cm} (16-2)

Figure 16-16
Example 16-1.

Find the magnitude and direction of the force on the electron:

\[F = k \frac{Q_1 Q_2}{r^2} \]

\[k = 8.988 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2 \]

\[r = 0.53 \times 10^{-10} \text{ m} \]

\[F = 8.2 \times 10^{-8} \text{ N} \]
Which charge exerts the greater force?

\[Q_1 = 50 \, \mu C \quad Q_2 = 1 \, \mu C \]

Superposition: for multiple point charges, the forces on each charge from every other charge can be calculated and then added as vectors.

The net force on a charge is the vector sum of all the forces acting on it.

\[\vec{F}_{\text{net}} = \vec{F}_1 + \vec{F}_2 + \cdots \]

Example: calculate the net force on \(Q_3 \)

The electric field is the force on a small charge, divided by the charge:

\[\vec{E} = \frac{\vec{F}}{q} \]
16.7 The Electric Field

For a point charge:

\[E = k \frac{Q}{r^2} \]
\[E = \frac{1}{4\pi \varepsilon_0} \frac{Q}{r^2} \]

(16-4a)
(16-4b)

16.7 The Electric Field

Force on a point charge in an electric field:

\[\mathbf{F} = q\mathbf{E} \]

(16-5)

Superposition principle for electric fields:

\[\mathbf{E} = \mathbf{E}_1 + \mathbf{E}_2 + \cdots \]

16.8 Field Lines

The electric field can be represented by field lines. These lines start on a positive charge and end on a negative charge.

(a)

(b)

16.8 Field Lines

The number of field lines starting (ending) on a positive (negative) charge is proportional to the magnitude of the charge.

The electric field is stronger where the field lines are closer together.

16.8 Field Lines

Electric dipole: two equal charges, opposite in sign:

(a)

16.8 Field Lines

The electric field between two closely spaced, oppositely charged parallel plates is constant.

(d)
16.8 Field Lines

Summary of field lines:
1. Field lines indicate the direction of the field; the field is tangent to the line.
2. The magnitude of the field is proportional to the density of the lines.
3. Field lines start on positive charges and end on negative charges; the number is proportional to the magnitude of the charge.

16.9 Electric Fields and Conductors

The static electric field inside a conductor is zero – if it were not, the charges would move.

The net charge on a conductor is on its surface.

16.9 Electric Fields and Conductors

The electric field is perpendicular to the surface of a conductor – again, if it were not, charges would move.

Figure 16-35
Example 16-10

Application: shielding, Faraday cage

16.10 Gauss’s Law

Electric flux:
\[\Phi_E = EA \cos \theta \]
\[= E_\perp A = EA_\perp \]
(16-7)

Electric flux through an area is proportional to the total number of field lines crossing the area.

16.10 Gauss’s Law

Flux through a closed surface:
\[\Phi_E = E_1 \Delta A_1 \cos \theta_1 + E_2 \Delta A_2 \cos \theta_2 + \cdots \]
\[= \sum E \Delta A \cos \theta = \sum E_\perp \Delta A_\perp \]
16.10 Gauss’s Law

The net number of field lines through the surface is proportional to the charge enclosed, and also to the flux, giving Gauss’s law:

\[\sum E \cdot \Delta A = \frac{Q_{\text{enclosed}}}{\varepsilon_0} \]

(16-9)

This can be used to find the electric field in situations with a high degree of symmetry.

Example: electric field near charged spherical shell

Summary of Chapter 16

- Two kinds of electric charge – positive and negative
- Charge is conserved
- Charge on electron: \(e = 1.602 \times 10^{-19} \text{ C} \)
- Conductors: electrons free to move
- Insulators: nonconductors

Example: electric field at surface of a conductor

\[E = \frac{\sigma}{\varepsilon_0} = \frac{Q}{AE_0} \]

Summary of Chapter 16

- Charge is quantized in units of \(e \)
- Objects can be charged by conduction or induction
- Coulomb’s law:

\[F = k \frac{Q_1 Q_2}{r^2} \]

- Electric field is force per unit charge:

\[\mathbf{E} = \frac{\mathbf{F}}{q} \]

Summary of Chapter 16

- Electric field of a point charge:

\[E = \frac{1}{4\pi \varepsilon_0} \frac{Q}{r^2} \]

- Electric field can be represented by electric field lines
- Static electric field inside conductor is zero; surface field is perpendicular to surface
- Electric flux:

\[\Phi_E = EA \cos \theta \]

- Gauss’s law:

\[\sum E \cdot \Delta A = \frac{Q_{\text{enclosed}}}{\varepsilon_0} \]